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ABSTRACT

" In this paper, the author proposes two methods of estimation of the

-

regression coefficients when the errors are not distributed identically
and independently and are of nonzero mean. The estimates proved in this
»
! paper are shown to be strongly consistent and mean square consistent.
\
\
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1. INTRODUCTION

Suppose we have a system of linear equations

Y. = Xi

i B-‘+-oc+xi8'i=],2’.oo,m (,])

1 p P

where Yi’ X,

i i=1,2, veeyny, J=1,2, ..., p are known while

J
Bys cees Bp are the unknowns. There are many ways to define a solution
for the determination of g' = (B]. cees Bp). One well known way is
the so-called Chebyshev approximation, which seeks to minimize

Q. (8) = max |Y, - X!|

n- 1<i<n L

where Xi = (Xi s sees Xi }'. Such a solution, denoted by §h, can be
-~ 1 p -
computed by the method of linear programing (see [2] and [6]).

Now if Y Y2’ ... are observed with random errors, then, instead

19
of (1), we have the linear regression model

91 =21,2, ceas n (2)

= y!
Y. 518 + e1

1

where e, ..., e, are random errors. Usually, in (2), it is assumed that

the expectations of errors are zero and have finite second moment with

‘orthogonality or asymptotic independence. To solve this probiem, one

can use the famous least square estimation (LSE) method. In the literature,
there are a lot of papers concerning with LSE and many important results

are obtained (see [1], (3], [5]). But the unbiasedness and consistency

of LSE strongly depend on the assumption that the expectations of errors

are zero, and this assumption is not realistic sometimes. The means of
errors of measurements may be different. Similarly, it is not always
realistic to assume that the errors are distributed independently. In

such situations, it is of interest to obtain consistent estimates of 8.

In this paper, we propose two methods of obtaining consistent estimates

of 8.
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Both of these methods are motivated by the so-called Chebshev approximation.
The first method is to use the measure

Qn(B) = max (Yi - X%E) - min (Y

- Xi8)
1<iz<n ]fjin

i s
which is never negative. So we can find the solution én which minimizes
Qn(B). We refer to § as MD estimate (that is, the estimate based on
Maximum Di fference between residuals).

The second method is to use the measure

Q. (8)

n~

max |Y; - X!8
1<iz<n 1 ~1.

Denote by ?ﬁ the value of B which minimizes 56(9). We shall call ?ﬁ
MA estimator (that is, the estimator based on the Maximum Absolute value
of residuals).

In Section 2, we shall prove the strong consistency of én whereas
in Section 3, we shall prove its mean square consistency. In Section 4,
we will prove that estimates of endpoints of error support based on the
residuals, with respect to én’ are strong by consistent, and establish
the strong consistency of the estimate of second moment of errors, based
on én’ when the error sequence is stationary and ergodic. In Section 5,
we éstab1ish the strong consistency of ?h and its mean square consistency
is given in Section 6. In Section 7, we shall prove the consistency of
estimates of the largest value of endpoints and that of the second moment
of errours when the error sequence is stationary and ergodic. Here we
emphasize the fact phat we do not use independence (even in the asymptotic

case) of the error sequence in proving our results.

For example, let €,n = 1, 2, ... be i.i.d. random variables with

common uniform distribution over the interval [0,1]. Define the errors as
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K=1,2, oy i=1,2, ..., 2%

ek = S0
Such an error sequence satisfies all conditions in our theorems but it
is not asymptotically independent.

Of course, if the errors have a common mean, our model will turn out
to be the usual linear regression model. In this paper, we do not assume
the errors have common mean. For example, let en be independent r.v.
distributed on (0,1) and with density pn(x).z €> 0, Also, assume that
E(en) are not equal, Define

1

e2k+i = X ei + e

i=1,2, ... k=1,2, ...

k’

In this case, LS method does not work but our method still works.
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2. STRONG CONSISTENCY OF §_

In this section we shall prove the following theorem:

Theorem 1. Suppose that ei has a support included in the bounded in-
terval [a], az], and for any subsequence {e; :j =1, 2, ...} of {e;}

J
we have

Time, =a,, lime, = a,, a.s. (3)
. 2 — i, 1
> j Jre ]

Also, suppose that {Xi} is bounded, and for any nonzero p-vector d,

Tim x;d does not exist, Then

N—o

1im én = B, a.S. (4)
M. -~

Proof. Several preliminary facts are in order,
1. Define a function

gla) = Tim a'xn - lim a'xn
on Rp, then g{a) is continuous on Rp, and g(a) > 0 when a # 0.
The second conclusion follows directly from the assumption of the
theorem, and the first is an easy consequence of the boundedness of {xi}.
Denote by B the surface of the unit sphere in RP i.e. B = {a: ol = 1}.

Because B is compact, g is continuous, and g(a) > 0 for a # 0, we have

[}
i

inf g(a) > 0. (5)
g.eB -

2. Define B and c as above. Then we can find a positive integer m
and a subset D = {91, cees gm} of B such that for any a6 B, there exists

2, € D with the property
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sup {i(g. - ?.‘1)|ZJ| tji=1,2, ...} <c/b (6)

The proof is obvious. If Hx.H <M, j=1,2, ..., then we need only

to find m large enough so that there exists a @ﬁ - net of B consisting of

m points. This §% - net is chosen as D.

For every a; ¢ D, we can find out two subsequences {3_(1.1.}m and

{X:n:}  of {5n} such that

2123 j=1

lim gix, = Tim giX,s lim gix =
jooo ~il3 <o s i~ 123 e

—
-
3

1

Denote the values of y and e corresponding to x. ,r=1, 2,

~irj by yirj’ eirj

i.e. ifx, .= Xy s then yirj = Yo @4pi T Put

~irj irj -

E., = {[im e, = a,t, E., = {lime,,. = a,}
il oo ilj 2 i2 T i2] 1

m
E=n (E
i=1

i1 " Eyp)- (7)

3. P(E) =1,

In fact, since P(Eil) = P(Eiz) =1,1i=1, ..., mby (3), we get the
result,

Employ the symbol w to represent a real number sequence (c], Cos ces)s
a; < ¢y 22y, i=1,2, ... . The event E determined by (7) can be viewed

~

as a subset E of the w-space i.e, E = {(e1, €5 e..) € E},

4, Forany €>0,t > €, a; € D, put dt =B + tai’ then for any

w e E, there exists Ni(w) such that

2
-k t) o

max (yk(w) X d t) - 1T;2n(yk(m) -

1<k<n
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when n > N. ().

The proof is as follows: For simplicity of notation we shall use

Y» € to express yk(m) and ek(m). Then

Y - xl'<dt = x8 te - 3&(8 + t“i) =e - txa.. (9)
Take n > 0 whose value will be given later. Since Tim ei]j = a, and
jre
11m %%§i1j = lim E{fn, we can find 3 = 31(n,w) so that
J-= n
ei]j] 28, - (10)
a'x... < limalx +n. (1)
-1-1131 e T 1N

Take N, = Ni1(n.m) large enough so that when n > N., we have

Yrgpe e eeen Xl

Then by (9)-(11), when n > N., we have

' ' - - : 1
max (y, - xdy) > ®i1g, T Wiy 2% 70 t(lim aix +n).  (12)

]ik_<_n M ~

Similarly, we can prove that there exists Ni2 = "iz(“'“) such that when

n > Nj, we have

min (yk - §"<§t) 23, *n - t(Tim alx_ = n). (13)
1ik_<_n : nees *

Put N, = N.(n,u) = max{N;4(n,u), Niz(”’“)}' Then using (12), (13) and

noticing the definition of ¢ in (5), we get
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v

a, - a; - 2(t + 1)n + tc. (14)

Now specify n = E%fTTT' Since s(éia).i 6%§+1) for t > €, it follows
from (14) that for t > €

max (y, - x'd,) - min (y, - x'd,)
1<k<n ko ~k=t 1<k<n ko ~k-t

ct _ - 2
1a2-a1-2(t+1)m+tc-a2 a1+3tc,
This proves the assertion,

Now turn to the proof of theorem 1. Fix u g E and € > 0, and again
use yi, €., N, etc. to express yi(w), ei(“)’ Ni(“)' Put N = N{w) =
max N.(w). Suppose that £e RP satisfies [£ - 8] > €, then £ can be
1<i<m ~ - ~

written as £ =8 + ta, t > €, a e B. By 2, we can choose a; € D so that

(6) is true. Remember that dt =8 + ta;, we have

P

19 = ' = -y} -
Ve = &=y - (8 +ta) =y, - x(d + tla - ay))

~K~ ~K '« ~1

- - t - [} - - ] -
=Yt K8 - tgle - o) 2y - oxdy - te/d '

and

t !
Yy = §k£ <Yyt Ekqt + tc/4.

- —

From these inequalities and (8), we have




max (y, - x'2) - min (y, - x.2)
1<ken K KT qgken K oK

> max (y, - x'd,) - min (y, - x'd,) - tc/2
Tcken K KT qoken K-kt

> a2 - A + tc/6

% for n > N, On the other hand, we know that

] 3 [}
max (y, - x8) - min {y, - x8)

1<k<n 1_<_kin
- = max e, - mine, < a, - a,.
. 1<k<n 1<k<n k=72 1

So we have Qn(ﬂ) > Qn(B) for n > N and |[£ - 8[| > €. According to

- the definition of 8. s We have HB,‘ - 8] <¢ when n > N. Since e€» 0 is

arbitrary, this proves that lim §n =8 when w € E. The proof of Theorem 1 f
n-ro

is concluded in view of 3.
Let us mention two important examples of this theorem,
1. {ei} is a m-dependent and identically distributed sequence and

the support of e, is bounded, where m is a positive integer.

Let 275 @, express the infimum and supremum of the support of e

1
p respectively.
’ (1) m=1.
It is obvious that Tim e, =a,,lime, =a, for any subsequence \

Jr I ;
le; } of {ey}.

J
(IT) m> 1.

Take arbitrarily a subsequence {ei_} of {ei}. We can further choose

J
an iid, subsequence {ei} from {ei }. By (I) we have Tim e; = 3,, a.s.
' J i
So a, > 1im e; > Tim e; = a,, a.s. In a similar way we prove the other
X assertion of (3).

...............




"

2. let {ei} be a stationary sequence, the support of e being bounded
(a1, a, denote the left and right endpoint of the support) and suppose

that the following condition (weak dependency) holds:

Tin{sup{|p(A)p(8,)-P(AB )| Aes(e.) B eoley, ues piysenedd] =0 (15)

N>

for any fixed i, where c(ei, ej, ...) express the o-field generated by

ei, ej’ LI L]
For this case we again take an arbitrary subsequence {ei } of {ei}.
J
for fixed ¢ > 0, put Ej = {ei. <a, - el. It needs only to verify that
J
P(Ev Ev+] Ev+2 .oe) = 0’ for any V. (16)

Use cin to denote the quantity under the limit sign of (15). Fix r> v and
take ny large enough to make cir"] < 1/2". Notice that ir + N < i
Further, choose ny large enough to satisfy Cir+n n, < ]/2r+1. In general,
large enougk so that C%

+n
rny

after determining n_, we choose n _
m ] rén ... tn Tnel

<1/2"™. Then

| A

P(E_E E ceo)
roorEng Trengin,tng

172" + P(E

| A

r‘+n.I Er‘+n.l+n2 Er+n]+n2+n3 °°°)P(Er)

r r+l
V2 o+ o+ P(Er+n1+n2 Er+n1+n2+n3 ...)P(Er)P(Er+n])

I A

< e e e

)...P(E )

r +1
< (2" w2 e L) s PEIP(E O
o0 e m

for any nature number m. Since P(Er) = P(E ) = ... <1, lettingm > =

in the above expression we get




P

“gf o e dp > )

P(E E .y oee) < 17257,

v Ev-+1 v+2
Thus (16) is true. (16) shows that

Time, =a,, a.s.
Jom ]

Similarly, we can prove

lime, = a,, a.S.
-— i, 1
Nl J

e e T e T e T e T T e e (e PR L
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3. MEAN SQUARE CONSISTENCY OF 8n

In this section we shall prove the following theorem:

Theorem 2. Under the assumption of theorem 1 we have
lim E(|8, - 8|?) = 0.
o - -

Proof. Define h(a) = Tim [ max a'x; - min a'x,}. Because {xj} is
T e gicn 1<izn® © i

b0unded, h(g) is finite everywhere and further, it is easily seen from
the assumption of theorem 1 that h(a) > O when o # 0, and h(a) is contin-
uous everywhere on Rp. So the infremum of h(g) on the surface of unit
sphere B is greater than zero : ¢ = inf{h(a): a ¢ B} > 0. FindonB a

finite subset 5 = {&1, cens &q} with the following property. For any

a e B, there exists i e {1, ..., q} such that
supf]fa - a,)'x,l: 3=1, 2, ..} < /4 (17)

Now we prove the existence of N such that

ma x x%a - min xia > ¢/4, for every a € B when n > N,
1<i<n™ " 1<i<n™'" -

In fact, by the definition of E, we can find out N such that

max x'a. = min xla. > 35/4, i=1, «ees q
1ikin°k'1 1_<_kin"k°] ’

when n > N, For any o € B choose oy such that (17) holds, then we have

max x'a - min x'a > ( max xé“i - 2/4) - ( min xi“i + 2/4)

likin:k' 1ikin"k” T 1<k<n 1<k<n

= max xé“i - min x&“i - E/Z > 35/4 - E/z = 2/4
1<k<n ™" 1<k<n™ "

when n > N. Now put t = 2(a, - a;)/c. If £€RP anc|le - gl|> t, then £

a € B, t > t. Thus for n > N, we get

can be written as g =g + Ea

-~ -
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Q (2) = max (y, - xz£) - min (y, - x£)
I qcken K KT qeken K K

=  max (ek - Ex'a) - min (ek - Exéa)
1<k<n T 1<k<n T

v

t( max x'a - min xia) - ( max e, - _min ek)
1<k<n™ " 1<k<n™"" 1<k<n 1<k<n

|v

tc/a - (a, - ay) > 2(a, - ay) > Q,(8).

This shows that {8y, By,1s -..} are uniformly bounded. Since

P(1im é; = g) = 1 by theorem 1, the assertion of theorem 2 follows from
nee

the dominant convergent theorem.
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4, ESTIMATION OF THE ENDPOINTS OF THE
SUPPORT AND THE SECOND MOMENT

Define

a1y = min (y; - xi8)s 8y, = max (y; - xi8,).

1<i<n 1<i<n
Theorem 3. Under the assumption of theorem 1, Sln, aZn are strong
consistent estimates of ay, 3, respectively. (So an - 51n is a strong

consistent estimate of a, - a1.)

Proof. Take ;2n for instance. Because 1im max e; z.Tﬂi s by (3),
T 1<i<n aas

we have P(1im max e; = az) =1, Now
e 1<i<n

max (y; =~ x!g ) = max (y; - x!B - x!(g - 8))
T<i<n L 1<i<n oS st s

= max (y; - xi8) +J_ = max e, + J
'I:_iini -1- n ‘I.<_'i§n1 n

where |J | < sup H§i|||@n -8|l.. Because 1im En = B, a.S. in view of theorem

| { naad
1 and {51} is bounded, we derive that lim Jn = 0, a.s. Combining this with
N0
P(1im max e; = az) =1, we get 1im a,, = a,, a.s.

o k<i<n

Now suppose that €15 €5 «oe is a strictly stationary ergodic
~ n ~
sequence. As an estimate of Ee%, we use Sn = 1/n 2 (yi - gggn)z.
i=1

Theorem 4. Suppose that {ei} is a strictly stationary ergodic sequence.

Assume that the conditions of theorem 1 are true. Then

Tim §n = Ee%, 2.5, (18)
| i xaad

Proof. We have




“".*"'I

= .J.| + J2 + J3. (19)

In view of ergodicity of the sequence [4], we gain

Tim J, = Eeﬁ, a.s. (20)
N

Write M = supli;||, then M < =, Hence
i
3, < WIB, - 8l > 0, a.s. (21)
Finally, lhif%(én -8l < (|32| + la]I)MH 8, - 8lls so we obtain

JW + 0, a.S. (22)

By (19)-(22), (18) follows.

‘3
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5. STRONG CONSISTENCY OF B
In this section we shall prove the following theorem:

Theorem 5. Suppose that each e, has a support included in the bound-

ed intervals [ai, a2] and for any subsequence'{ei :j=1,2, ...} of'{ei}
J

we have

Tim e = 22 lime, =ay, a.s. (23)
-0 RECIR

J

Also suppose that'{§i} is bounded, and for any nonzero p-vector d
Tim x'd > 0,

Then
1im gn = g, a,s. (24)

Proof. Without losing generality, we suppose that !a]! < 2y,

othersise consider the model -y, = x'n(-s) - e

Several preliminary facts are in order.
(1) Define a function
E(g) = Tim ‘)_("‘g.

on RP. Then g(a) is continuous on RP, and E(E) > 0 when o # 9.

The second conclusion follows directly from the assumption of the
theorem, and the first is an easy consequence of the boundedness of {fi}’

Denote by B the surface of the unit sphere in Rp, i.e.
B = {g: lall= 1}. Because B is compact, g is continuous, and g(a) > O

for a # 9, we have

(25)

o)
1}
by
=
—h
il
—
1R
g
v
o
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(I1) Define B and ¢ as above, then we can find a positive integer
m and a subset D = {a;, ..., gz} of B such that for any « € B, there

exists Ei € D with the property
sup{|(a - Ei)'lez j=1,2, ...} <¢/3. (26)

The proof has been given in §2.

For every E} e D, we can find out a subsequence {fij};=1 of {x,}

such that
lim 91X1J Tﬁg'lxn’ i= ]’ 2’ soey E-
J-)-ao
Denote the values of y and e corresponding to x1 by Y5 iy J i.e,
if 513 = Xy then y1J Yo eij =e. Put
F. = (Time,. = a,}
i e ij 2
m
F= 0 F,. (27)

(I11) P(F) =

In fact, since P(Fi) =1,1i=1, ..., T by (23), we get the result.
Employ the symbol w to represent a real number sequence (31, EZ’ ce)s

ay < c < a,, i=1, 2, The event F determined by (27) can be

viewed as a subset F of the w-space, i.e. F = {(e1, €5, ...) & E}.

(IV) For any €> 0, t > ¢, E} - D, put d, =8 - tE}. Then for any
2 & Q d 8 a
w e E, there exists Ni(B) such that
max |y, (w) - x/d | > a + gtc (28)
k k.t 3

1<k<n

when n > N.(a).

.........




Proof. For simplicity of notation, we shall use Yo € to express

¥, () and e, (&), when
Ve = %dp T KB+ e - X8 - tag) = ey + txfay. (29)

- . ce . .
Tak = s }. Since T3 L. = d1 'X. . =
ake n m1n{a2 e in j1m ejJ a, an j1m 91513

Tim a!x_, we can find k = k(n,0) such that
S B

€ > 3y - 1 (30)

@i Xk > ¢ - " (31)

Take N, = Ni(ﬁ,ﬁ) large enough so that when n > N, we have
Xie € X1 -o0s %1,
Then by (29)-(31), when n > N, we have
a1y, - 5yl 2 leyy + by
1<k<n T
>a2-i+t('c‘-ﬁ) =a,+tc- (1+th
2_

since 3%%1’71 -3—%36-;1')' for t > €.
This proves the assertion.
Now turn to the proof of Theorem 5, Fix w € Fande > 0, and again

use y,, e;, N;, etc. to express yi(U), ei(E), Ni(E). Put N = N(w) =

i
max Ni(E). Suppose that £ ¢ RP satisfies ||& - 8] > €, then £ can be
1<i<n - R -

written as £ =8 - ta, t > ¢, @ € B. By (II) we can choose a; ¢ D so

~ ~1

that (26) is true. Remember that d, = 8 - ta,, we have




(2 2 Ly - g - .
From this inequality and (28), we have

max |y, - x'&| > max |y, - x!d. | - tc/3
]ikin k wl\ ~ - ]<k<n k ~k~t

2, - 1,—
> a, +§tc- tc/3-a2 +§tc

for n > N. On the other hand, we know that

max |y, - x!8| = max |e | < a,.
1cken & K= qggen KT 2

So we have ﬁn(ﬁ’.) > 5n(§) for n

jv

N and ||£ - 8| > e. According to the
definitions of En’ we have "En - 8 < ¢when n > N, Since € > 0 is
arbitrary, this proves that 1im 'g:n = g when we .!:' The proof of Theorem 5

is completed in view of (III). a
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6. MEAN SQUARE CONSISTENCY OF Eh

In this section we shall prove the following theorem:

Theorem 6. Under the assumption of theorem 5, we have

vin E(]E, - ) = 0.
N>

Proof. Without losing generality, we suppose that la1| < a,.

Define h(a) = 1im max a'x.. Because {xi} is bounded, h(a) is
o 1iiin' ~ ~ ~

finite everywhere and further it is easily seen from the assumption

of theorem 5 that F(g) > 0 when & # 0, and h(g) is continuous everywhere
on Rp. So the infimum of F(?) on the surface of unit sphere B is
greater than zero: s = inf{h(a) = a ¢ B} > 0. Find on B a finite sub-

set G = {§1, cees ér} with the following property: For any o ¢ B, there

exists i € {1, ..., r} such that
sup{(a - 8;)'xsl 3 =0, 2, ...} < s/4, (32)

Now we prove the existence of N such that

max x!la > s/4
1<i<n” ~

for every a € B when n > N,
In fact, by the definition of s, we can find out N such that

max xlzai >3/4,1 =1, ..., v
1<k<n™""
when n > N. For any a € B choose a; such that (32) holds. Then we have

max x{o = max (x'a. + x!(a = a.))
1<k<n™K  qcken “K=T o ckie S

> max x'a, - s/4 > s/2

- 1§K5n'k"1
when n > N, Now put t = da,/s, If Le RP and |2 - 8]| > t, then £ can
- - . - - . - - '4
R R TR
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e a2 a 2B

-
a
x
-
-

be written as £ = B - Ea, a € B, E > t. So that when n > N, we get

Q (€) = max |y, - x! 2] = max |e, + tx'al
n 1<k<n ko ks 1<k<n k -k
> t  max |x'a] - max lekl
1<k<n ™77 1<k<n
> ts/2 - a, > 3, > Q (8).
This shows that (Eﬁ, §N+1, «..} are uniformly bounded. Since P(]im‘En = g)

[ iaid
= 1 by theorem 5, the assertion of theorem 6 follows from the dominant

convergent theorem. a
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7. ESTIMATION OF THE ENDPOINT OF THE SUPPORT WHICH
HAS THE MAXIMUM ABSOLUTE VALUE AND SECOND MOMENT

~ —
Define a, = max |y, - x!B
n : ~i=n

1<izn

Theorem 7, Under the assumption of theorem 5, an is a strong con-

sistent estimate of max {]a]] , [azl}’.

Proof. Without losing generality, we suppose that Ia1] < a,.

Because 1im max e, > Time , by (23) we have P(1im max e, = a,) = 1.
n-e 1<i<n n nse 1<i<n
Now
max |y, - x!8 | = max |y, -x!s+x!(5-§')|
l<icn 0 "M <icn ~1- =1~ en
= max ly. - x;g[ +J = max e1. + Jn
T<i<n - 1<i<n

where |[J | < sup]x.| J[B. - 8. Because 1im8_ =8, a.s. and {x,}
n' — ~1 ~Nn ~ <o ~Nn ~ J |

is bounded, we derive that lim J, =0, a.s. Combining this with
n-o

P(1lim max e, a2) =1, we get ]im; = a,, .S,
nse 1<i<n N N

Now suppose that €1s €5y oo is a strictly stationary ergodic

n
sequence. As an estimate of Eef, we use S_ =-}; 1 (ys - x%?n)z.
TE IR

Theorem 8. Suppose that {ei} is a strictly stationary ergodic se-
quence. Assume that the conditions of Theorem 5 are true. Then

. = _ 2
Tim Sn -Ee1, a.s.

If we substitute Bn by En’ the proof is the same as the proof of Theorem 4.

............
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